The Logic of Demand in Haskell

Preface

This paper considers the usage of the pattern matching as a tool to control
the logic of demand in a lazy functional programming language Haskell. Some
theoretical results are given both with an automatic tools to proove P-logic
rules for programm validation.

1 Introduction

Haskell is a lazy functional language but by using pattern matching and
irrefutable patterns fine control of computation flow may be achieved. The
interaction between lazy semantics and pattern matching is complicated and
not well known. Since pattern matching provides fine control on computation
process it is impossible to specify the finite set of rules for complete validation.
Application of P-logic to the Haskell pattern matching is introduced. It
provides a formalization of mixed evaluation and simplifies the validation
of programms.

2 A Haskell fragment and its informal
semantics

The section provides an overview of Haskell approach to data types and case
expressions. A formal semantics is also described.

Data types. The data type declarations are needed to describe data
constructors, giving a set of signatures of type constructors. Strictness of
constructor argument is explicitly specified by the tag L or S.

Case expressions. Pattern matching is used in a simple case expressions,
a left-hand part of definitions or in an explicit abstractions. Since they all
are similar only case expressions are focused. A Haskell case expression
is construction of the case descriminator and the list of the case branches.
The case expressions are evaluated by repeatedly matching patterns of a
branches. If no branch matches an unrecoverable error is raised and the
computation flow is aborted. The pattern carry out two tasks: control of



the branch to execute and a binding of the variables. Using variable as
a pattern matches every descriminator. Using wildcard, underscore (), is
like the variable pattern but no binding occurs. Data constructors in the
patterns have to be applied exactly as described in the data type declaration.
Pattern is matched only if the descriminator has exact type and all of the sub-
terms matches. Lazy computation of i-th argument in the cases other than
irrefutable patterns described below is implied by non-strict declaration in
the data constructor. By using operator ~ the evaluation operation of the
irrefutable branch pattern is deferred till the pattern values are needed. Then
it is fully evaluated. If it fails no alternative is tried and an unrecoverable
error is raised. The Haskell example using the Tree data construction
highlights how the deferred computation is working and some of the pitfalls
are described.

3 Background

Section 3 describes the Haskell specific type-frame semantics and gives an
overview of the adopted simple model of ML polymorphism.

Type-frame semantics. Frame model provides «objects» and axioms
of representability and functions from objects to objects in terms of an
application operator. Also an environment model condition is described.

A simple model of ML polymorphism. An overview of different models
of polymorphism is given. Since article focuses on a fine control of demand
in Haskell only ML polymorphism is considered. Othori’s ML model is used
due to it simplicity. Also it is possible to give the predicate semantics to ML
polymorphism.

4 Formal semantics of a Haskell fragment

Section 4 describes the formal semantics of Haskell, static and denotational.
Since the article focuses the pattern matching the type semantics is given for
the patterns. It consists of a pattern and a record type. Latter is introduced
to capture variable bindings but not to extend Haskell. The type frame notion
is extended to describe the Haskell semantics. It is done in the context of a
domain theory and fits in it.

The Haskell fragment. The Haskell type system is provided with some



details but also with special features ommited. It is a convenient type system
for implicit polymorphism. First, the formal rules for the patterns are given
using a record types in the type rules.

Simple model of polymorphism for the Haskell fragment. The subsection
describes how the simple Othori’s model of ground types is extended to the
semantics of polymorphic terms. Since the original model defines the meaning
of polymorphic expressions in terms of the ground instances and the type-
indexed set of denotations it has to be adopted to reflect the semantics of
Haskell fragment.

Haskell frames. The subsection consists of the detailed description of the
Haskell fragment frame. The first part of the frame is complete partial
order (cpo) semantics. Note that CPO semantics for typed A-calculus is
frame model. Every Haskell frame has a bottom element. The definitions
of bottom of the compound frames are given in a domain theory terms.
Currying and uncurrying operators are defined and equations for them are
given. Since data type constructors may be lazy recursive infinite types may
be defined. Also strictness may be specified explicitly. The saturation strict on
i-th argument property is defined to outline the difference between meanings
of the «strictness». Data type constructors are presented in the context
of type frames. Also the article adduces the case of curried constructors
in the same context. As pattern-matching is computed in Maybe monad,
the monadic computation must be considered in the type frame semantics.
Different aspects of record type are studied in the context of frame semantics.
A combination operator on the result of the monadic computation is defined.
The Definition of operators ¢ and [] for the simple types using Maybe monad
are given.

Typed semantics for the simply-typed Haskell fragment. The denotation
semantics is given in this section as a conservative extension of the semantic
of ground terms.

5 Logic for the Haskell fragment

The denotation semantics only defines an abstract model, the verification
logic is not considered. P-logic is used to verify semantic properties of
expressions. This section provides the meaning to the formulas of P-logic
by binding them with the formal semantics of the Haskell fragment. Some
basic proof rules of P-logic are considered in the context of frame semantics.



Multi-place predicates are not considered since they are too complex and
their formal definition of the notion does not fit into the article. The unary
predicates and their usage are described both formal and informal. Both
strict and lazy P-logic predicates are defined in this section.

Predicates in P-logic. Two ways of the predicate combination in P-logic
are described. First, the implicit «lifting» of data type constructors to act
as the predicate constructors in P-logic. Second, the «arrow» predicate used
to describe the compound predicate that is satisfied by the function-typed
expression. Besides two of the atomic unary predicates, the abstract Haskell
definition and the typing rules for predicates are provided.

Judgement forms. A judgement form in P-logic is a relation of typing
environment and two lists of assertions: the first whose conjunction is an
assumption and the second whose disjunction constitutes the conclusion of
judgement. As the example property of the standard function map from
Haskell prelude is given.

Inference rules for properties of the Haskell fragment. Two types of the
inference rules in P-logic are defined: left, when property is on the left side
of entailment symbol, and the right one.

Rules asserting an arrow property of the Haskell frame are defined. As
the example the increment function for the type Integer is considered and
the formal validation rules are provided. Both right and left-introduction
rules for the properties of the function application are defined for the strong
and weak arrow properties respectively. Lifting data type constructor to
the predicate constructor for further applying to the predicates is defined
and formal declaration in surface syntax is given. The paper defines the rule
asserting difference of resulting predicate constructors lifted from the different
data types so the strict type validation may be achieved on the preprocessing
stage.

Pattern matching. The algorithms deriving predicates from the Haskell
patterns are provided. Derived predicate describes both the control aspect of
a pattern and the subterms of matching term. Since patterns may be nested,
it is convenient to use the algorithmic calculation of patterns instead of directl
formulation of proof rules. Function pi implementing desired algorithms of
recursive pattern processing and producing pattern predicates is defined and
its Haskell code is given. Different examples of the irrefutable patterns are
considered, both with the explicit strictness modifiers and without them. The
domain of a pattern is defined introducing predicate for a non-deferred match.
Both irrefutable (or wildcard) cases and strong matches are covered. Two

4



rules for the branch computation are defined — one for the match successfull
and another for failure. Rules for the case computation are given using Maybe
monad and the inductive monadic computation of the set of branches. The
following examples are considered: one with the match that succeded and
another with exception branch computation that generates pattern match
failure error (also known as «Non-exhaustive patterns error).

A semantic interpretation of P-logic. P-logic extends a Haskell by
providing the predicate constants and the predicate constructors. The
meaning of the simple type is intricated by the meaning of the predicates
over underlying frame that interprets the Haskell term type. The article
gives the definition and description of the predicate environment. Also
the interpretation of the characteristic predicates of sets in a type frame
is defined. The paper gives the interpretation of the unversal predicates
satisfied by any or only bottom element. The predicate variable is a result
of applying the predicate environment map to the name of the variable. The
article provides the equation describing the meaning of a predicate formed
with the data constructor at a ground instance of the Haskell data type. The
function-typed term property characterizing a predicate is also described.
The negated and polymorphic predicates are defined too.

Satisfiability and validity of a sequent. A formalization of a well-typed
term to satisfy a compatibly typed predicate is given, stating it in the
setting of type frame semantics. A ground proposition and a bunch of
sequent definitions are declared. The lemma formalizing an assertion that
the meaning of a polymorphic predicate cannont depend on the structure of
terms of underlaying type is suggested and proved.

6 Soundness of P-logic

Soundness of a logic means that all of its inference rules are coherent with
its semantics. An inference rule asserts a propositional implication of a
consequent judgement from zero or more antecedent judgement forms.

Soundness of inference rules. An inference rule is sound if the implication
it states is valid for a model of the logic. An implication is valid if it is true
of a model under all type-compatible assignments to variables.

A reference frame model. The section describes interpreter for the Haskell
fragment which later will be used to check the soundness of P-logic rules. It
relies on Maybe monad to control the flow among alternate match as Haskell



has explicit monads. Also frame set of Haskell types is defined. It is a set
of representations of the saturated applications of its data constructors to
elements of the frame sets of their argument types.

Finite models for Haskell types. Type constructions of the Haskell
fragment are considered to show how each type or type construction can
be represented by a finite type in which to model some rule of P-logic.

Modeling predicates. The way to check the soundness of the rule with
simulation of all type-compatile value assignment is given. Notes about Univ
and UnDef predicates are also supplied.

Automated model checking of inference rules. Checking the soundness
of polymorphic inference rules with interpreter given in previous section is
described. Different steps of this process such as predicate assignment or
choosing of a type instance are provided in more or less details.

7 Related Work

As part of the Programatica project at the Pacific Software Research Center
a formal basis for reasoning about Haskell programs and automated tools for
mechanizing such reasoning are devoloping. Previous work on Miranda by
Simon Thompson lacks ability to work with partialy undefined or lazy data
types hense Miranda itself provides no way to declare them.

Among verification verification tools Sparkle for lazy functional language
Clean is outlined. The Sparkle logic has a notation to express an undefined
value but does not provide modalities.

Stratego language from http://stratego-language.org/ suggests
algrebra for constructing complex data types by the constructor congruences.
This concept may be used in P-logic applied to the predicate constructors
and predicate congruences.

Larsen introduces weak-strong modality analogous to the one of P-logic
to discriminate must and may transitions in a process algebra. This analysis
was generalized by Huth, Jagadeesan and Schmidt. They provide a semantic
interpretation of the modality in a more general framework.

Since all programming logics must confront the issue of undefined values
induced by computational environment and some other reasons partial logics
that deal with undefinedness have been studied by many of groups. Among
them are Owe, Gumb & Lambert, Cheng & Jones, Gries & Schneider,
Konikowska and an excellent overview by Farmer.



8 Conclusion

The language fragment which concerns the paper is the patter-matching part
of Haskell that has impact on demand. A formalization of the denotational
and axiomatic semantics of Haskell pattern-matching is given. Unlike to ML
with eager semantics the Haskell pattern-matching is much more complex.
Pattern-matching is essentially an eager activity, and is thus harmonious with
ML’s eager semantics.

The first part of this paper reports on part of a semantics for the
whole of Haskell. The denotational semantics was chosen because it allows
evaluation of P-logic expressions and sufficiently expressive to specify while
language whith varying levels of formality operationally, denotationally,
or informally: type classes and overloading, polymorphism, polymorphic
recursion, and mixed evaluation. A pure domain-theoretic approach is
sufficient in terms of expressivenes but lacks the abstraction for a standart
semantics. So frame semantics as a suitably abstract foundation for Haskell
was suggested. The representation independence is extremely useful in the
proof of soundness, allowing to use model-checking over finite models of types
for many rules. Another virtue of frames as a semantic basis for Haskell is
their close connection to the semantics of ML polymorphism. Overloading
and polymorphic recursion can be neatly expressed in Ohori’s setting.

P-logic is a verification logic for all of Haskell, but the article has only
provided here the part relative to Haskell’s fine control of demand. P-logic
allows to formulate properties more precisely using both the weak and strong
modalities.

The proof rules of P-logic are sufficiently subtle to validate in mind so the
paper suggests the way to mechanize the most detailed parts of a soundness
proof. The meta—theory that supports this automatic soundness checking is
one of the contributions of the paper.

Appendix

The appendix consists of the detailed proof of two lemmas on associating
and binding predicates to the pattern.



