
1 2005
1.1 File index
1.1.1 Overview
Index system is intended for gathering, storing and analysing information on
the distributed computing system local storage condition in order to enable
us to work with groups of �les representing a state of parallel application.

The main entities of the local storage control system are: a disk � a local
�le system of a computation node, a �le, a task and a checkpoint � a group
of �les associated with a task. Created during the application execution, the
checkpoints are registered in the system, then the scheduling of redundant
information calculation are performed to tolerate possible failures.

Due to the fact that information is gathered in the �le index, recovery
operations in case of faults or temporary unavailability of computation nodes,
consistency validation of �les and �le groups and automatic purging of
outdated data may be provided.

The core system manager is implemented with high-level language
Haskell, suggesting convenient modi�cation of consistency maintenance
algorithms and ease of building and validating mathematical models.

1.1.2 Disk daemons
In addition to the main index, there are special disk daemons, o�ering low-
level �le operations such as hashing or removing. At the moment some of the
basic commands are implemented, such as unlink request, checksum (MD5)
calculation and validation. Besides a disk daemon is responsible for redundant
information creation and moving �les between nodes.

At startup it connects to the index and delivers information on the disk
it has been launched. In case the disk has not been indexed it is added,
otherwise the disk information is updated. A disk identi�er is created by
means of libccp library (see 1.1.6).

The disk daemon keeps the list of all �les, indexed for the given disk, � at
startup it requests the current list; afterwards it registers redirection for the
disk and when �le is added information on it is routed to the daemon. On
operations requiring index information update, such as checksum calculation,
a corresponding update command is sent to the index.

1



Redundant information calculation is performed in the following way.
First each daemon initialises an operation with an unique identi�er. Then
each process, involved in a communication network, is given a set of
commands to form its local bio and directions what connections it should
establish and accept. (for more details on the building of communication
networks see description filebc). If an error occurs during the process, the
pending operation will be purged for all daemons. After it all processes
are ordered to execute the operation. Those not involved in it delete this
information as useless. Such method is used to avoid the danger of keeping
¾lost¿ data, that is not belonging to any started or pending operation. Also
the network building logic is put to the index, where the algorithms described
in Section . . . can be performed.

At present it is possible to build any networks using �les, TCP connections
and XOR-checksum calculations, these are enough to provide fail tolerance
according to XOR scheme.

1.1.3 Interface
The process creates a network server no 2563 TCP port and read commands
out of standard input. Besides another server is created on 2564 TCP port
accepting SSLv3 connections with RC4-SHA encryption and client certi�cate
veri�cation. If veri�cation fails, the connection is aborted, so it is possible
to allow access to the index only for veri�ed applications or integrate with
Globus Toolkit. At present there are some problems related to authentication
with proxy certi�cates but they are not critical and will be solved on
installation.

Access control is still not implemented due to the fact that system is not
ready to be installed in real environment and ease of debug is preferred to
securing system from unauthorised access.

Below sections standard commands are described and classi�ed.
Control commands Commands used to control daemon behaviour, such

as shutting it down, disconnecting client or data base reloading.
Commands partly processed in server part These commands not routed

directly to core but processed in C-server.
Consistency control commands Commands used to control consistency of

stored information.
Data manipulation commands These commands are not supposed to

be typed by hand. They are not processed in C-code and have format

2



¾command¿ ¾data type¿ ¾data¿. Commands not starting with symbol /
are simple Haskell types serialisation.

1.1.4 Message routing
All commands in index are sent to designated listener, which allows
sending client a reply to his request, not to others. It is implemented by
binding symbolic name to connection, one connection being tagged by more
then one name. So client may request additional aliases using command
/cntl/alias. In this way disk daemon may specify that except it is designated
name of form inet-[number of connection] it is to receive messages
for disk-[disk UUID]. Besides some special aliases are used. For example
disk:broadcast is used to route message to all connected disk daemons. It
is used to build communication networks.

3


