This manual is for the person who wants to know more about HAL than is needed to just set up an EMC configuration file. HAL can run without EMC so this manual focuses on the stand alone HAL. For information on EMC related HAL see the Integrators manual.

1. What is HAL?

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of “building blocks” to be loaded and interconnected to assemble a complex system. The “Hardware” part is because HAL was originally designed to make it easier to configure EMC for a wide variety of hardware devices. Many of the building blocks are drivers for hardware devices. However, HAL can do more than just configure hardware drivers.

1.1. HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is useful to examine those principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC machine, those components might be the main controller, servo amps or stepper drives, motors, encoders, limit switches, pushbutton pendants, perhaps a VFD for the spindle drive, a PLC to run a toolchanger, etc. The machine builder must select, mount and wire these pieces together to make a complete system.

1.1.1. Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as black boxes. During the design stage, he decides which parts he is going to use - steppers or servos, which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s decisions about which specific components to use is based on what that component does and the specifications supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect the choice of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback needed by the amp and the velocity or position signals that must be sent to the amp from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every interface card will require a driver. Additional components may be needed for software generation of step pulses, PLC functionality, and a wide variety of other tasks.

1.1.2. Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens for a servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the limit switches connect to the controller, and so on. As the machine builder works on the design, he creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which signals are needed, and what they should connect.

1.1.3. Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired and mounted, and then they are interconnected according to the wiring diagram. In a physical system, each interconnection is a piece of wire that needs to be cut and connected to the appropriate terminals.

HAL provides a number of tools to help “build” a HAL system. Some of the tools allow you to “connect” (or disconnect) a single “wire”. Other tools allow you to save a complete list of all the parts, wires, and other information about the system, so that it can be “rebuilt” with a single command.

1.1.4. Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether a limit switch is working or to measure the DC voltage going to a servo motor. He may hook up an oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find a problem that requires the wiring diagram to be changed; perhaps a part needs to be connected differently or replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools needed for testing and tuning a system. The same commands used to build the system can be used to make changes as needed.

1.2. Summary

This document is aimed at people who already know how to do this kind of hardware system integration, but who do not know how to connect the hardware to EMC.

The traditional hardware design as described above ends at the edge of the main control. Outside the control are a bunch of relatively simple boxes, connected together to do whatever is needed. Inside, the control is a big mystery — one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes device drivers and even some internal parts of the controller into smaller black boxes that can be interconnected and even replaced just like the external hardware. It allows the “system wiring diagram”to show part of the internal controller, rather than just a big black box. And most importantly it allows the integrator to test and modify the controller using the same methods he would use on the rest of the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about using extra flexible eight conductor shielded cable to connect an encoder to the servo input board in the computer, the reader immediately understands what it is and is led to the question, “what kinds of connectors will I need to make up each end.” The same sort of thinking is essential for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If you are comfortable with the idea of interconnecting hardware black boxes, you will probably have little trouble using HAL to interconnect software black boxes.

2. HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary because these terms are not arranged in alphabetical order. They are arranged by their relationship or flow in the HAL way of things.

Component

: When we talked about hardware design, we referred to the individual pieces as "parts", "building blocks", "black boxes", etc. The HAL equivalent is a "component" or "HAL component". (This document uses "HAL component" when there is likely to be confusion with other kinds of components, but normally just uses "component".) A HAL component is a piece of software with well-defined inputs, outputs, and behavior, that can be installed and interconnected as needed.

Parameter

: Many hardware components have adjustments that are not connected to any other components but still need to be accessed. For example, servo amps often have trim pots to allow for tuning adjustments, and test points where a meter or scope can be attached to view the tuning results. HAL components also can have such items, which are referred to as "parameters". There are two types of parameters: Input parameters are equivalent to trim pots - they are values that can be adjusted by the user, and remain fixed once they are set. Output parameters cannot be adjusted by the user - they are equivalent to test points that allow internal signals to be monitored.

Pin

: Hardware components have terminals which are used to interconnect them. The HAL equivalent is a "pin" or "HAL pin". ("HAL pin" is used when needed to avoid confusion.) All HAL pins are named, and the pin names are used when interconnecting them. HAL pins are software entities that exist only inside the computer.

Physical_Pin

: Many I/O devices have real physical pins or terminals that connect to external hardware, for example the pins of a parallel port connector. To avoid confusion, these are referred to as "physical pins". These are the things that “stick out” into the real world.

Signal

: In a physical machine, the terminals of real hardware components are interconnected by wires. The HAL equivalent of a wire is a "signal" or "HAL signal". HAL signals connect HAL pins together as required by the machine builder. HAL signals can be disconnected and reconnected at will (even while the machine is running).

Type

: When using real hardware, you would not connect a 24 volt relay output to the +/-10V analog input of a servo amp. HAL pins have the same restrictions, which are based upon their type. Both pins and signals have types, and signals can only be connected to pins of the same type. Currently there are 4 types, as follows:

  • bit - a single TRUE/FALSE or ON/OFF value

  • float - a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.

  • u32 - a 32 bit unsigned integer, legal values are 0 to +4294967295

  • s32 - a 32 bit signed integer, legal values are -2147483648 to +2147483647

Function

: Real hardware components tend to act immediately on their inputs. For example, if the input voltage to a servo amp changes, the output also changes automatically. However software components cannot act "automatically". Each component has specific code that must be executed to do whatever that component is supposed to do. In some cases, that code simply runs as part of the component. However in most cases, especially in realtime components, the code must run in a specific sequence and at specific intervals. For example, inputs should be read before calculations are performed on the input data, and outputs should not be written until the calculations are done. In these cases, the code is made available to the system in the form of one or more "functions". Each function is a block of code that performs a specific action. The system integrator can use "threads" to schedule a series of functions to be executed in a particular order and at specific time intervals.

Thread

: A "thread" is a list of functions that runs at specific intervals as part of a realtime task. When a thread is first created, it has a specific time interval (period), but no functions. Functions can be added to the thread, and will be executed in order every time the thread runs.

As an example, suppose we have a parport component named hal_parport. That component defines one or more HAL pins for each physical pin. The pins are described in that component’s doc section: their names, how each pin relates to the physical pin, are they inverted, can you change polarity, etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It takes code to do that, and that is where functions come into the picture. The parport component needs at least two functions: one to read the physical input pins and update the HAL pins, the other to take data from the HAL pins and write it to the physical output pins. Both of these functions are part of the parport driver.

3. HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that can be installed and interconnected as needed. This section lists some of the available components and a brief description of what each does. Complete details for each component are available later in this document.

3.1. External Programs with HAL hooks

motion

A realtime module that accepts NML motion commands and interacts with HAL

iocontrol

A user space module that accepts NML I/O commands and interacts with HAL

classicladder

A PLC using HAL for all I/O

halui

A user space program that interacts with HAL and sends NML commands, it is intended to work as a full User Interface using external knobs & switches

3.2. Internal Components

stepgen

Software step pulse generator with position loop. See section [sec:Stepgen]

encoder

Software based encoder counter. See section [sec:Encoder]

pid

Proportional/Integral/Derivative control loops. See section [sec:PID]

siggen

A sine/cosine/triangle/square wave generator for testing. See section [sec:Siggen]

supply

a simple source for testing

blocks

assorted useful components (mux, demux, or, and, integ, ddt, limit, wcomp, etc.)

3.3. Hardware Drivers

hal_ax5214h

A driver for the Axiom Measurement & Control AX5241H digital I/O board

hal_m5i20

Mesa Electronics 5i20 board

hal_motenc

Vital Systems MOTENC-100 board

hal_parport

PC parallel port. See section [sec:Parport]

hal_ppmc

Pico Systems family of controllers (PPMC, USC and UPC)

hal_stg

Servo To Go card (version 1 & 2)

hal_vti

Vigilant Technologies PCI ENCDAC-4 controller

3.4. Tools and Utilities

halcmd

Command line tool for configuration and tuning. See section [sec:Halcmd]

halgui

GUI tool for configuration and tuning (not implemented yet).

halmeter

A handy multimeter for HAL signals. See section [sec:Halmeter]

halscope

A full featured digital storage oscilloscope for HAL signals. See section [sec:Halscope]

Each of these building blocks is described in detail in later chapters.

4. Tinkertoys, Erector Sets, Legos and the HAL

A first introduction to HAL concepts can be mind boggling. Building anything with blocks can be a challenge but some of the toys that we played with as kids can be an aid to building things with the HAL.

4.1. Tower

 I'm watching as my son and his six year old daughter build a tower
from a box full of random sized blocks, rods, jar lids and such. The
aim is to see how tall they can make the tower. The narrower the base
the more blocks left to stack on top. But the narrower the base, the
less stable the tower. I see them studying both the next block and the
shelf where they want to place it to see how it will balance out with
the rest of the tower.

The notion of stacking cards to see how tall you can make a tower is a very old and honored way of spending spare time. At first read, the integrator may have gotten the impression that building a HAL was a bit like that. It can be but with proper planning an integrator can build a stable system as complex as the machine at hand requires.

4.2. Erector Sets
[The Erector Set was an invention of AC Gilbert ]

What was great about the sets was the building blocks, metal struts and angles and plates, all with regularly spaced holes. You could design things and hold them together with the little screws and nuts.

 I got my first erector set for my fourth birthday. I know the box
suggested a much older age than I was. Perhaps my father was really
giving himself a present. I had a hard time with the little screws and
nuts. I really needed four arms, one each for the screwdriver, screw,
parts to be bolted together, and nut. Perseverance, along with father's
eventual boredom, got me to where I had built every project in the
booklet. Soon I was lusting after the bigger sets that were also
printed on that paper. Working with those regular sized pieces opened
up a world of construction for me and soon I moved well beyond the
illustrated projects.

Hal components are not all the same size and shape but they allow for grouping into larger units that will do useful work.In this sense they are like the parts of an Erector set. Some components are long and thin. They essentially connect high level commands to specific physical pins. Other components are more like the rectangular platforms upon which whole machines could be built. An integrator will quickly get beyond the brief examples and begin to bolt together components in ways that are unique to them.

4.3. Tinkertoys
[Tinkertoy is now a registered trademark of the Hasbro company. ]

 Wooden Tinker toys had a more humane feel that the cold steel of
Erector Sets. The heart of construction with Tinker Toys was a round
connector with eight holes equally spaced around the circumference. It
also had a hole in the center that was perpendicular to all the holes
around the hub.
 Hubs were connected with rods of several different lengths. Builders
would make large wheels by using these rods as spokes sticking out from
the center hub.
 My favorite project was a rotating space station. Short spokes
radiated from all the holes in the center hub and connected with hubs
on the ends of each spoke. These outer hubs were connected to each
other with longer spokes. I'd spend hours dreaming of living in such a
device, walking from hub to hub around the outside as it slowly rotated
producing near gravity in weightless space. Supplies traveled through
the spokes in elevators that transferred them to an from rockets docked
at the center hub while they transferred their precious cargoes.

The idea of one pin or component being the hub for many connections is also an easy concept within the HAL. Examples two and four (see section [cha:HAL-Tutorial]) connect the meter and scope to signals that are intended to go elsewhere. Less easy is the notion of a hub for several incoming signals but that is also possible with proper use of functions within that hub component that handle those signals as they arrive from other components.

Another thought that comes forward from this toy is a mechanical representation of HAL threads. A thread might look a bit like a centipede, caterpillar, or earwig. A backbone of hubs, HAL components, strung together with rods, HAL signals. Each component takes in it own parameters and input pins and passes on output pins and parameters to the next component. Signals travel along the backbone from end to end and are added to or modified by each component in turn.

Threads are all about timing and doing a set of tasks from end to end. A mechanical representation is available with Tinkertoys also when we think of the length of the toy as a measure of the time taken to get from one end to the other. A very different thread or backbone is created by connecting the same set of hubs with different length rods. The total length of the backbone can be changed by the length of rods used to connect the hubs. The order of operations is the same but the time to get from beginning to end is very different.

4.4. A Lego Example
[The Lego name is a trademark of the Lego company. ]

When Lego blocks first arrived in our stores they were pretty much all the same size and shape. Sure there were half sized one and a few quarter sized as well but that rectangular one did most of the work. Lego blocks interconnected by snapping the holes in the underside of one onto the pins that stuck up on another. By overlapping layers, the joints between could be made very strong, even around corners or tees.

 I watched my children and grandchildren build with legos -- the same
legos. There are a few thousand of them in an old ratty but heavy duty
cardboard box that sits in a corner of the recreation room. It stays
there in the open because it was too much trouble to put the box away
and then get it back out for every visit and it is always used during a
visit. There must be Lego parts in there from a couple dozen different
sets. The little booklets that came with them are long gone but the
magic of building with interlocking pieces all the same size is
something to watch.

5. Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon, simply connecting two pins with a hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current flows (or stops) immediately. Other coils may change state, etc, and it all just "happens". But in PLC style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each rung is evaluated in the order in which it appears, and only once per pass. A perfect example is a single rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and de-energize it. That means the contacts close again, etc, etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung, then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version of ClassicLadder exports a function to do exactly that. Meanwhile, a thread is the thing that runs the function at specific time intervals. Just like you can choose to have a PLC evaluate all its rungs every 10mS, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is not what the thread does - that is determined by which functions are connected to it. The real distinction is simply how often a thread runs.

In EMC you might have a 50μs thread and a 1ms thread. These would be created based on BASE_PERIOD and SERVO_PERIOD—the actual times depend on the ini.

The next step is to decide what each thread needs to do. Some of those decisions are the same in (nearly) any EMC system—For instance, motion-command-handler is always added to servo-thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s encoder read and DAC write functions to the servo thread, or hooking stepgen’s function to the base-thread, along with the parport function(s) to write the steps to the port.